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Abstract—Superpixel segmentation aims to automatically
group visually similar pixels within an image into compact
regions. This approach provides an efficient low-level representa-
tion of image data, effectively reducing the complexity of image
primitives for subsequent vision tasks. Recent deep convolutional
networks have shown their advantages in superpixel segmentation
task. However, many existing deep learning methods still struggle
to preserve object edges and accurately perceive similar pixels.
This limitation can be attributed to their inadequate ability to
model edge information and capture effective context within
the image. To address these issues, we propose an Edge guided
Local-Global Attention Network (ELGANet) for superpixel seg-
mentation. Specifically, we first devise an Edge Enhancement
Module (EeEM), which integrates multiple edge features into
the superpixel-friendly features. Then, we develop a Local-
Global Attention Module (LGAM) to analyze the relationship
between pixels and local or global region patches, expecting
to obtain effective context information for grouping similar
pixels. The edge features and deep global semantic features are
subsequently fused to generate the superpixel-friendly features.
The final superpixel-friendly features are then mapped into final
superpixels. Extensive experiments on four benchmark datasets
demonstrate the effectiveness and superiority of our ELGANet
compared with ten state-of-the-art models.

Index Terms—Superpixel segmentation, Edge enhancement,
Local-Global context

I. INTRODUCTION

SUPERPIXEL segmentation aims to over-segment an im-
age into a series of compact regions, which is generated by

clustering perceptually similar pixels based on low-level image
properties [1], [2]. Different from the isolated pixels in digital
images, which are numerous and lack semantic information,
superpixels offer a more semantically meaningful and efficient
representation of image data. They provide more semantically
informative processing primitives for subsequent visual tasks,
and greatly improve the efficiency of computer vision tasks,
such as salient object detection [3]–[7], object tracking [8],
[9], and semantic segmentation [10]–[12].
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A common practice for superpixel segmentation is to first
divide the image into a series of patches as initial superpixels.
Then, perform iterative analysis of the similarity of features
between pixels and surrounding superpixels, estimating the
affiliation of each pixel to its surrounding superpixels until
stability is reached [2]. Traditional methods rely on manually
crafted features to group similar pixels. The SLIC-like meth-
ods [13], [14] employ common iterative clustering approach,
while graph-based methods [15]–[19] treat segmentation as
a discrete optimization problem. While traditional superpixel
methods have made significant advancements, they are typi-
cally non-differentiable, posing challenges for their integration
into deep learning models for end-to-end training of estab-
lished visual tasks. This limitation restricts their applicability.

Recently, some deep learning-based superpixel models
[20]–[22] have been proposed, leading to a significant im-
provement in superpixel segmentation performance. In these
deep superpixel methods, the extraction of deep features
tailored for superpixels and the establishment of an associa-
tion score matrix between pixels and neighboring superpixels
are pivotal for effective superpixel segmentation. For the
superpixel-friendly deep features, most methods employ the
encoder-decoder architecture to extract multi-scale contextual
information [20], [21]. Additionally, the Association Implan-
tation Module (AIM) [22] has been developed to enrich pixel
features by consolidating information from neighboring grid
cells through convolution operations. For the association score
matrix, Superpixel Sampling Networks (SSN) [20] transforms
the non-differentiable iterative association mapping into a
differentiable one by transitioning pixel hard assignments to
pixel soft assignments. This enables the model to adapt its su-
perpixel representations according to the specific task require-
ments, albeit at a increased computational complexity due to
iterative processes. The Full Convolution Network (FCN) [21]
directly learns the pixel-superpixels association maps through
convolution layers with supervision from datasets and loss
functions. While this approach achieves faster computation
speed, it may struggle to learn diverse superpixel represen-
tations for different vision tasks. Although these existing deep
superpixel networks have achieved good performance, they
still encounter challenges in accurately preserving object edges
and discerning similar pixels.

To tackle these challenges, we propose an Edge guided
Local-Global Attention Network (ELGANet), comprising two
purposefully crafted modules: the Edge Enhancement Module
(EeEM) and the Local-Global Attention Module (LGAM). The
EeEM module is designed to explicitly model edge infor-
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mation, aiming to enrich feature representation and enhance
the edge accuracy of deep superpixel networks. Besides, the
LGAM module aims to augment pixel contextual information
by analyzing the interplay between pixels and local neigh-
boring patches, as well as global patches. This enhancement
boosts the network’s capability to perceive similar pixels
and promotes improving superpixel compactness. Specifically,
as illustrated in Fig.1, the superpixel-friendly features are
extracted from five encoder stages. The edge enhanced feature
are generated in stage 2, where multiple edge features are
integrated into the superpixel-friendly features. Then, from
stage 3 to stage 5, we extract the local and global context
information by analyzing the relationship between pixels and
local surrounding patches, as well as global patches. Finally,
the edge features and deep global semantic features are fused
to refine the superpixel-friendly features at various resolutions
from deep to shallow layers. The final superpixel-friendly
features generated from decoders are mapped into superpixels
through one mapping operation. Extensive experiments on four
datasets demonstrate the effectiveness and superiority of our
ELGANet compared with ten state-of-the-art models.

We summarize the main contributions as follows:
1. We propose a novel Edge Enhancement Module (EeEM)

that explicitly models multiple edge information and integrates
them into superpixel feature representation. This module re-
fines superpixel features at various resolutions, thereby en-
hancing the edge accuracy of deep superpixel networks.

2. We propose a novel Local-Global Attention Module
(LGAM) that explores the interaction between pixels and their
local surrounding patches, as well as global patches. This
module enhances the network’s ability to perceive similar
pixels and promotes improving superpixel compactness.

3.We also conduct comprehensive experiments on four
benchmark datasets. Through extensive experimental evalua-
tions and ablation studies, we validate the effectiveness of our
key modules and demonstrate the superiority of our ELGANet
when compared to ten state-of-the-art models. The source
codes and trained models will be released upon acceptance.

II. RELATED WORKS

A. Traditional superpixel methods

Traditional superpixel methods group similar pixels based
on low-level features. These methods are typically catego-
rized into graph-based methods and clustering-based methods.
Graph-based methods formulate superpixel segmentation as
a graph partitioning problem, with pixels serving as vertices
and edges indicating the similarity between connected pixels.
Superpixels are formed as a series of subgraphs through
solving a discrete optimization problem. Pixels sharing sim-
ilar features belong to the same subgraph, while those with
different features belong to different subgraphs. FH [15],
RW [16], ERS [17], and the recent DRW [18], HSSPCL
[23] are the representative graph-based methods. Different
from the graph-based methods, the clustering-based methods
treat superpixel segmentation as a pixel clustering problem.
Initially, the image is divided into a series of patches to
serve as initial superpixels. Then, the algorithms iteratively

estimate each pixel’s affiliation to its surrounding superpixels
until stability is achieved. Classic methods like Simple Linear
Iteratively Clustering (SLIC) [2] restricts the search range of
surrounding superpixels to spatially nearest neighbors. Other
techniques, such as LSC [13] and Manifold-SLIC [14], explore
more effective feature spaces for pixel clustering. FLIC [24]
considers the neighboring continuity and explores an active
search scheme rather a fixed search regions in SLIC. SNIC
[25] proposes a non-iterative approach to growing superpixel
clusters. SCSC [26] formulates the superpixels segmentation
as a subspace clustering problem. ESOM [27] enhances su-
perpixel segmentation by incorporating edge information. It
employs a directional statistical ratio-based edge detector with
Gaussian-shaped windows, and prevents edge pixels from
merging into superpixels by evaluating pixel intensity dis-
similarity, spatial distance, and edge cues, thereby improving
boundary adherence. LAD [28] leverages image local standard
deviation to enhance responses in low-contrast regions. VSSS
[29] introduces a new pixel assignment scheme inspired by
vine spread processes. Although traditional superpixel meth-
ods have made significant strides, their algorithms are typically
non-differentiable. This presents challenges for integrating
them into deep learning models for end-to-end training of
established visual tasks, limiting their applicability.

B. Deep superpixel methods

Deep superpixel methods group similar pixels based on
deep features, significantly enhancing superpixel performance.
SEAL-ERS [30] introduces the first deep superpixel network
by integrating a trainable pixel affinity network with exist-
ing graph-based superpixel segmentation techniques. How-
ever, the non-differentiable nature of the graph-based pixel-
superpixel association prevents it from becoming a fully end-
to-end learning network. SSN [20] develops a differentiable
SLIC method, replacing pixel-superpixel hard assignments
with a soft assignment scheme, making it the first end-to-end
trainable superpixel network. FCN [21] directly learns pixel-
superpixel association maps through convolution layers with
supervision from datasets and loss functions. Another crucial
issue is the extraction of superpixel-friendly features. AINet
[22] introduces an Association Implantation Module (AIM) to
enrich pixel features by consolidating information from neigh-
boring grid cells. NLM [31] utilizes multiple parallel dilated
convolutions to generate multi-scale cluster-friendly features.
Additionally, for precise edge accuracy, ESNet [32] incorpo-
rates an additional edge loss to supervise latent superpixel
features. Moreover, FSNet [33] integrates frequency domain
sharp boundary information with multi-scale deep features to
enhance superpixel performance. Despite the progress, existing
deep superpixel networks still face challenges in accurately
preserving object edges and distinguishing similar pixels.

C. Subsequent visual tasks

Superpixel are widely used in various visual tasks due
to the ability to provide rich semantic and object structure
information. For salient object detection, the authors in [3]
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Fig. 1: Our ELGANet consists of four main parts. The Encoder Part is dedicated to extract superpixel-friendly features with the
assistant of our EeEM and LGAM modules. The Edge Fused Part generates edge-enhanced local-global contextual features.
The Decoder Part progressively refines features from deep to shallow layers to generate the final superpixel-friendly features.
The Association Part generates the final superpixels.

established a graph using superpixel and apply graph clus-
tering to address the video salient object detection task. Cai
et al. [4] leveraged the sensitivity of superpixel to low-
level information to compensate for the information lost in
high-level feature, thereby enhancing the accuracy of target
boundaries. Superpixel is utilized as graph nodes in [5] to
establish a video salient object detection framework based
on graph convolutional networks. In [6], authors proposed
a multi-level superpixel-based target detection framework to
enhance ship target detection. CCTNet [7] utilizes patch
and superpixel tokens collaboratively to enhance the model’s
understanding of image semantics and object structure. In
the field of object tracking, superpixel-based discriminative
appearance model [8] is designed to enhance the model’s
ability to preserve the boundary information of both the target
and the background. Zhan et al. [9] developed object tracking
method based on salient superpixel, which are computed by
manifold ranking. For the task of semantic segmentation, a
novel framework presented in [10] employs superpixels to
generate candidate pseudo-labels, which are then transformed
using the invariant representations of shape and intensity
derived from medical images. Jing et al. [34] proposed a fast
SAR image segmentation method using superpixels. It first
over-segments the image into superpixels, then automatically
determines the cluster number via the density peak algorithm,
and finally applies modified k-means clustering for efficient
segmentation. Additionally, [11] introduces the utilization of
superpixels to augment the creation of pseudo-labels for the
weakly-supervised semantic segmentation.

III. PROPOSED METHOD

In this section, we present our Edge Guided Local-Global
Attention Network (ELGANet) for superpixel segmentation.
We begin by outlining the overall architecture in section III-A.
Following that, in section III-B, we introduce our new Edge-

Enhancement Module (EeEM). In section III-C, we delve
into our proposed local-global attention module (LGAM). In
section III-D, we describe the superpixel generation method.
Finally, the training loss is provided in section III-E.

A. Overall Architecture

As depicted in Fig.1, our ELGANet comprises four
main parts. The Encoder Part is responsible for extracting
superpixel-friendly features, while the Edge Fused Part gen-
erates edge-enhanced local-global contextual features. The
Decoder Part progressively fuses features from deep layers
to shallow ones to generate the final superpixel-friendly fea-
tures, and the Association Part generates the final superpix-
els. Specifically, given a raw input image, the superpixel-
friendly features are extracted from five encoder stages of our
Encoder Part. The edge-enhanced features are generated in
stage 2, where multiple edge features are fused to generate
edge enhanced features. Then, from stage 3 to stage 5, we
progressively extract the local and global context informa-
tion by analyzing the relationship between pixels and local
surrounding patches, as well as global patches. To enhance
the feature representations, the edge features and deep global
semantic features are fused in the EdgeSliceFusion module
(Details are illustrated in the upper right of Fig. 1), then the
superpixel-friendly features are refined at various resolutions
from deep to shallow layers in the Edge Fused Part. The
Decoder Part utilizes simple deconvolution and convolution
operations to generate the final superpixel-friendly features.
In the Association Part, the final superpixels are generated
through a single association mapping operation. Next, we first
briefly introduce the Convolution Attention Module (CAttM)
and the Slice Concatenation. Then, the details of our new
Edge-Enhancement Module (EeEM) and Local-Global Atten-
tion Module (LGAM) will be described.
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(a) (b)

Fig. 2: Edge Enhancement Module (EeEM). (a) is the integral structure of our EeEM. (b) shows the visual examples of feature
maps generated by different submodules.

The Convolution Attention Module (CAttM). Different from
the plain basic convolution block, we adopt the Convolution
Attention Module (CAttM) as the basic feature extractor,
aiming to introduce inductive bias, cross-channel interaction,
and lightweight design. The CAttM is inspired by architectures
seen in SENet (Squeeze-and-Excitation Network) [35] and
EfficientNetV2 [36], as outlined below,

x = BN(Conv1×1(SE(GELU(DWConv3×3(x)))))
(1)

where the DWConv3×3, GELU , SE, Conv1×1, and BN
represent the 3 × 3 depth-wise convolution, Gaussian Error
Linear Unit, Squeeze and Excitation block, 1 × 1 plain con-
volution, and Batch Normalization operations, respectively.
Slice Concatenation. In the Edge Fusion Part, the Slice
Concatenation of the Edge Slice Fusion fuses the edge features
and deep features. Unlike the standard concatenation operation
which connects features group by group, Slice Concatenation
merges these two types of features channel by channel in
order to better integrate features from different stages. In
practice, two different feature maps can be represented as
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B. Edge Enhancement Module (EeEM)

Edge information plays a crucial role in superpixel seg-
mentation, helping to better adhere to boundaries. Existing
ESOM [27], [34] method also leverages edge information
to enhance segmentation. It employs traditional directional
statistical ratio-based edge detectors and prevents edge pixels
from merging into superpixels by evaluating pixel dissimilar-
ity, effectively improving segmentation. Unlike this traditional
approach, to develop a learnable method, we propose integrat-
ing learnable ‘Sobel’ operators, ‘Max-Avg’ change detection,
and convolutional parameters to generate edges. It can be
seamlessly incorporated into deep networks, enabling end-
to-end learning, and is capable of extracting richer, more
flexible edge information. Specifically, we propose a new
Edge-Enhancement Module (EeEM), which is integrated into

Fig. 3: (a) Visualization of the (8th, 16th, 24th) learned Sobel-
H and Sobel-V kernels. (b) BP-BR curves of different Sobel
configurations on the BSDS dataset.

Stage 2 of the encoding part. This decision is based on the
fact that shallow layers can capture finer edge details, and
extracting features at a smaller image resolution (obtained by
downsampling image features in Stage 1 by a factor of 2)
reduces computational complexity. As illustrated in Fig. 2(a),
three distinct branches are specifically designed to extract mul-
tiple types of edge features. The ‘Sobel-H DWConv’ branch
is tailored to capture horizontal gradient information, while
the ‘Sobel-V DWConv’ branch focuses on vertical gradient
information. The ‘Max-Avg’ branch is dedicated to perceiving
abrupt changes information. Subsequently, the outputs from
these branches are concatenated with the original features,
followed by a convolution block to enhance the edge guided
superpixel features.

The ‘Sobel-H DWConv’ and ‘Sobel-V DWConv’
branches. As shown in Fig. 2(a), to capture the horizontal and
vertical gradient information, we construct two learnable con-
volutional edge extraction branches: the ‘Sobel-H DWConv’
branch and ‘Sobel-V DWConv’ branch. Unlike traditional con-
volution, where learnable parameters are randomly initialized,
we initialize the ‘Sobel-H DWConv’ and ‘Sobel-V DWConv’
with the horizontal and vertical convolution parameters of
sobel edge detection. In addition, the depth-wise (DW) conv
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Fig. 4: Local Global Attention Module (LGAM). (a) is the internal structure of our LGAM. (b) illustrates the key pixels-patches
self attention mechanism. (c) shows the local context and global context.

is adopted to decouple spatial and channel information. The
sparsified filter connections, a form of regularization, promote
focus on horizontal/vertical edges. These are then passed
through batch normalization and activation functions to learn
edge features, which can be summarized as follows,

x
H/V
e = SobelH/V DWConv3×3(x)

x
H/V
e = GELU(BN(x

H/V
e ))

(2)

where SobelH/V DWConv3×3 denotes horizontal sobel con-
volution or vertical sobel convolution with kernel size of 3×3.
The operations BN and GELU represent batch normalization
and the activation function, respectively. The Sobel filters are
learnable, starting from predefined values, to handle complex
edges. The visualization of learned DW Sobel filters are shown
in Fig.3(a), and BP-BR curves in Fig.3(b) show that our
learnable DW Sobel filter outperforms that with non-learnable
fixed parameter, randomly initialized, or plain conv sobel. All
these observations validate the effectiveness of our proposed
learnable sobel filters on extracting edge information.

The ‘Max-Avg’ branches. To diversify edge information,
we specifically devise the ‘Max-Avg’ branch to detect abrupt
changes within local windows. Initially, we pass the original
input features through a standard convolutional block, which
is formulated as follows.

x̂ = GELU(BN(Conv3×3(x))) (3)

Subsequently, we perform max-pooling and average-pooling
operations separately on these features, both with a kernel size
of 3×3 and stride 1. Then, we compute the difference between
the results of max-pooling and average-pooling, followed by
batch normalization. Operations can be formulated as follows,

xMaxAvg
e = BN(Maxpool3×3(x̂)−Avgpool3×3(x̂)) (4)

where Maxpool3×3 and Avgpool3×3 denote the max-pooling
and average-pooling operations with kernel size of 3× 3 and
stride 1, respectively. This operation assigns high values to
the local windows with abrupt changes in pixel values and

low values to those without such changes. Consequently, this
branch effectively detects abrupt changes within local windows
and enriches the edge information.

Finally, the edge features from above branches and the basic
features are fused to achieve the edge-enhanced feature rep-
resentation xfuse

e . The fusion computation can be formulated
as follows,

xfuse
e = GELU(BN(Conv3×3(cat(x

H
e , xV

e , x
MaxAvg
e , x̂))))

(5)
where cat(·) refers to the concatenation operation in channel
dimension. Fig. 2(b) exhibits the visualized feature maps from
different branches, which also validate the effectiveness of our
EeEM in extracting edge sensitive features.

C. Local Global Attention Module (LGAM)

To enhance the network’s ability to perceive similar pixels
and improve the superpixels compactness, we propose a novel
Local-Global Attention Module (LGAM) that thoroughly ex-
plores local and global information. As illustrated in Fig. 4(a),
this module separately explores and fuses local and global
context to obtain a superpixel-friendly feature representation.
Superpixel segmentation determines pixel’s affiliation by ana-
lyzing the correlation between pixels and surrounding patches.
Inspired by this, we propose to generate superpixel-friendly
pixel features by aggregating information from surrounding
patches, as well as global patches. This approach differs
from traditional Transformers [37], which typically aggre-
gate information by analyzing correlations between pixels or
between patches. Next, we first elaborate our key Pixels-
Patches Self Attention mechanism, then briefly introduce the
implementation of our local and global self attention.

Pixels-Patches Self Attention. We propose our new Pixels-
Patches Self Attention (PiPaSA). The central pixel features are
updated by aggregating information from local surrounding
patches, as well as global all patches. This pixels-patches level
context is more conducive to superpixel segmentation.
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As shown in Fig. 4(b), given the input feature x, the pixel-
level query vector Qpi is first generated by flatten and linear
transformation operation, which is formulated as follows,

Qpi = Conv1×1(flatten(x)) (6)

where flatten(·) flattens a two-dimensional matrix into a one-
dimensional vector, and Conv1×1 represents plain convolution
operation with kernel size of 1× 1.

To obtain patch-level information xpa, we first aggregate all
the pixels in a local patch, by applying a convolution operation
with kernel size of g × g, where g × g is equal to the size of
initial superpixel. It is formulated as below,

xpa = Convg×g(x) (7)

where Convg×g(·) denotes convolution operation with kernel
size of g × g and stride g. Then, the patch-level key vector
Kpa and value vector Vpa can be obtained by applying flatten
and linear transformation operation, which is formulated as
follows,

Kpa = Conv1×1(flatten(xpa))
Vpa = Conv1×1(flatten(xpa))

(8)

The Pixels-Patches Affinity Matrix AffnPi2Pa can be
obtained by analyzing the correlation between pixels and
corresponding patches, which is formulated as below,

Affn
L/G
pi2pa = (QT

piK
L/G
pa )/

√
(d) (9)

where L refers to the local attention that is computed between
pixels and 9 nearest neighbor surrounding patches. The G
refers to the global attention that is computed between pixels
and all patches. d is the channel dimension. Then, the central
pixel feature x̃L/G can be updated as follows,

x̃L/G = V L/G
pa softmax−1(Affn

L/G
pi2pa)

T (10)

where softmax−1 denotes the softmax operation in last
dimension.

Local Attention Information Aggregation. As shown in
top of Fig. 4(c), to aggregate the local patches information
xL, we conduct the local Pixels-Patches Self Attention, by
analyzing the relationship between pixels and surrounding 9
nearest neighbor patches, which is formulated as follows,

x̃L = PiPaSA9NNPatches(x)
xL = Conv1×1(reshape(x̃

L))
(11)

where PiPaSA9NNPatches(·) denotes a concise local Pixels-
Patches Self Attention representation of Eq.(6)-(10).

Global Attention Information Aggregation. As shown in
bottom of Fig. 4(c), to aggregate the global patches informa-
tion xG, we conduct the global Pixels-Patches Self Attention,
by analyzing the relationship between pixels and all patches,
which is formulated as follows,

x̃G = PiPaSAAllPatches(x)
xG = Conv1×1(reshape(x̃

G))
(12)

where PiPaSAAllPatches(·) denotes a concise global Pixels-
Patches Self Attention representation of Eq.(6)-(10).

Finally, the local context xL, global context xG and original
features are fused to achieve superpixels-friendly features
xLG. The fusion computation can be formulated as follows,

xLG = GELU(BN(Conv1×1(cat(x
L, xG, x))) (13)

where cat(·) refers to the concatenation operation in channel
dimension.

D. Pixels to Superpixels module (P2SP)

To generate the final superpixels, we adopt a soft k-means
algorithm similar to the ones in [20], [38] to determinate
the affiliation of each pixel to its adjacent superpixels. As
shown in Fig. 1, the P2SP module has two input features:
X1 ∈ RH×W×C generated from decoder is used as the final
superpixel-friendly features, and X5 ∈ Rh×w×c′ generated
from stage5 is used to initialize the superpixel features. For the
convenience of calculation, these features are first transformed
by applying Eq.(14)-(15), obtaining S0 ∈ RNpatch×9×C and
Xpi ∈ RNpatch×Npixel×C .

S0 = unfold(Conv1×1(X
5)) (14)

Xpi = DiRearrange(X1) (15)

where Npatch = h × w is the number of patches (initial
superpixels). Conv1×1(·) is used to align the channel di-
mension. unfold(·) is used to generate 9 nearest neighbor
patch features. Npixel = H

h × W
w is the number of pixels

within one patch. DiRearrange(·) refers to the dimension
rearrange function. Then, the pixel assignment matrix Assn ∈
RNpatch×Npixel×9 is generated using Eq.(16),

Assn = softmax−1(
XpiS

T
0√

d
) (16)

where softmax−1 denotes the softmax in the last dimension,
and d is the channel number. We further rearrange Assn with
shape H × W × 9, where the dimension 9 represents the
probability of current pixel belonging to its 9 nearest neighbor
superpixels. Finally, the pixel assignment can be obtained
using Eq.(17),

HP
i,j = argmax

P∈{1,2,...,9}
(Assn(i, j), P ) (17)

where argmax is the maximum value parameter function.
HP

i,j represents the (i, j)th pixel belongs to the P th patch.

E. Training Loss

The pixel soft assignment matrix Assn ∈ RH×W×9 plays
a key role in the conversion between pixels and superpixels,
which is expected to be optimized in training stage. Since
there is no such groundtruth labels for the assignment matrix,
we adopted a similar strategy in [20], [21] to indirectly
learn Assn, by minimizing the distance between reconstructed
pixel-wise property and groundtruth labels. Specifically, we
first produce the superpixel-level property fsp as follows,

fsp =

∑
p:sp∈Np

fp ·Assn(p, sp)∑
p:sp∈Np

Assn(p, sp)
(18)
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(a) BSDS-BPBR (b) NYUV2-BPBR (c) KITTI-BPBR (d) DRIVE-BPBR

(e) BSDS-ASA (f) NYUV2-ASA (g) KITTI-ASA (h) DRIVE-ASA

(i) BSDS-CO (j) NYUV2-CO (k) KITTI-CO (l) DRIVE-CO

Fig. 5: Performance comparison with ten SOTA models on four datasets. From left to right: BSDS500, NYUV2, KITTI, DRIVE
datasets. From top to bottom: BP-BR, ASA, CO score.

where Np represents the neighboring superpixels of pixel p, fp
refers to the original pixel-wise property, and Assn(p, sp) de-
notes the assignment matrix between pixels p and superpixels
sp. Subsequently, we reconstruct pixel-wise property f ′

p from
superpixel-level property fsp and Assn(p, sp) as follows,

f ′
p =

∑
sp∈Np

fsp ·Assn(p, sp) (19)

The pixel-wise properties include the semantic labels fsem
p

and spatial position coordinates fx,y
p , which are optimized

by the cross-entropy loss LCE and L2 reconstruction loss,
respectively. As formulated in Eq.(20),

Lfinal = LCE(f
′sem
p , fsem

p ) + λL2(f
′x,y
p , fx,y

p ) (20)

where semantic labels fsem
p encode pixel categories with one-

hot encoding. The ‘GT Labels’ in Fig.7 show visual example,
where grayscale values represent distinct semantic categories.
λ = m/S is a balance weight, S is the superpixel sampling
interval and m is a balance weight. We set λ to 0.003/16 in
our model through detailed experiments.

IV. EXPERIMENTS

A. Experimental Setting

1) Datasets: We evaluate our method on four benchmark
datasets: BSDS500 [39], NYUV2 [40], KITTI [41], and

DRIVE [42]. The BSDS500 comprises 200 training images,
100 validation images, and 200 test images, each annotated
with multiple semantic labels. To align with prior research
[20]–[22], [30], we treat each label as an independent sample.
This results in a total of 1087 training samples, 546 validation
samples, and 1063 test samples. NYUV2 is an indoor seg-
mentation dataset that includes object instance labels. From its
total of 1449 images, a subset of 400 test samples has been
selected [43], by removing the ones with unmarked regions
along object edges. KITTI is an autonomous driving sce-
narios segmentation dataset. It comprises 200 high-resolution
images paired with corresponding semantic labels. DRIVE
is a medical dataset for retinal vessel segmentation, which
contains 20 images with vessel position labels. To ensure a fair
comparison, we adopt a consistent training and testing protocol
existed in previous works [20]–[22], [30]. Specifically, we train
our model solely on the BSDS500 training set and evaluate
its performance on the other datasets.

2) Implementation Details: We implement our method with
PyTorch on a single NVIDIA RTX3090 GPU. We empiri-
cally adopted GELU activation function in our method for
its smoother than ReLU, enhancing convergence and perfor-
mance. In training stage, we randomly crop the images to
208 × 208 as input, and train our model for 150k iterations
using the Adam optimizer (parameters β1 and β2 set to 0.9
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Fig. 6: Visual examples of superpixels generated by eight SOTA methods on BSDS500 dataset (top row), NYUV2 dataset
(second row), KITTI dataset (third row), and DRIVE dataset (last row), respectively.

and 0.999). The batchsize is set to 16, and the initial learning
rate is 8 × 10−4, which is halved every 45k iterations. At
training stage, the number of generated superpixels is 13×13,
and the initial patches is with size of 16×16. After a forward
inference, the initial superpixel feature of size 13×13 and the
final pixel-level superpixel-friendly features of size 208× 208
are utilized to compute the pixel-superpixel assignment matrix
through a single association mapping operation. In testing
phase, following previous works [21], different numbers of
superpixels can be obtained by varying the input resolution.

3) Evaluation Metrics: We assess our method using three
popular metrics: Achievable Segmentation Accuracy (ASA),
Boundary Precision and Boundary Recall (BP-BR), and Com-
pactness Score (CO). ASA measures the upper limit of accu-
racy achievable by employing superpixels as a segmentation
step. BP-BR assesses the correspondence between segmenta-
tion outcomes and ground truth boundaries. And the CO score
indicates the compactness of the superpixels. All metrics obey
that higher scores indicate better results.

B. Comparison with the state-of-the-art models.
In this part, we compare our method with 10 state-of-

the-art models, including 4 traditional methods VSSS [29],
HQSGRD [44], HSSPCL [23], SLIC [2], and 6 deep learning
methods CDS [45], FSNet [33], LNSNet [46], AINet [22],
FCN [21], SSN [20]. SLIC is the classic traditional method,
and HSSPCL, HQSGRD, VSSS are 3 most recent advanced
traditional methods. CDS, FSNet, LNSNet, AINet, FCN, and
SSN are 6 representative deep learning methods. All results are
either collected from publicly available sources or generated
by executing the released source code.

1) Quantitative Comparisons: The quantitative results on
four popular datasets are presented in Fig.5. From these
results, it is evident that our method generally achieves the
best or competing performance across all datasets, in terms
of all three metrics. For the edge accuracy, our method gen-
erally achieves advanced performance on BSDS500, NYUV2,

KITTI, and DRIVE datasets, in terms of ASA and BP-BR.
Although the advanced HQSGRD, SSN and HSSPCL achieve
a slightly higher performance than ours in Fig.5(c),(e),(h),
our method outperforms them by a large margin on other
datasets or metrics. These comparisons highlight the superior-
ity of our method in preserving accurate edge information. As
shown in Fig.5(i),(j),(k),(l), regarding the compactness (CO)
of superpixels, SLIC achieves a slightly higher performance
than ours on NYUV2. This phenomenon can be attributed
to the fact that NYUV2’s indoor scenes shown in second
line of Fig.6, characterized by simpler textures and planar
structures, favor SLIC’s clustering algorithm, resulting in more
compact superpixels. For the DRIVE dataset, in terms of
compactness, SLIC achieves significantly higher performance
than our method, but in terms of BPBR and ASA, the SLIC
method lags far behind ours. This is because DRIVE is
an eye vessel dataset that contains various relatively fine
vessels, and SLIC cannot perceive these vessels well, mis-
takenly identifying them as uniform backgrounds, resulting in
excessively high compactness at the cost of sacrificing much
edge perception performance. This phenomenon can also be
observed from Fig.6, the 3rd column represents the results of
SLIC and 10th column represents the results of our ELGANet.
While SLIC achieves higher compactness, it fails to effectively
perceive edge information. Our method both retains edge
information well and achieves good compactness. Despite this,
our method achieves the best or competing performance across
all datasets. This can be attributed to the effectiveness of
our new local-global attention module, which facilitate the
perception of similar pixels and contribute to compactness
improvement. Additionally, our method is trained solely on the
BSDS500 training set and evaluated on other datasets without
fine-tuning. This further validates the strong generalization
capability of our method.

2) Qualitative Comparisons: As illustrated in Fig.6, we
gather some visual examples of seven representative models
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(a) BSDS-BPBR (b) BSDS-ASA (c) BSDS-CO (d) NYU-BPBR (e) NYU-ASA (f) NYU-CO

(g) Visual examples generated by different network variants.

Fig. 7: Ablation studies on BSDS500 and NYUV2 dataset. (a)-(f) show the quantitative ablation results on both two datasets
in terms of BPBR, ASA and CO metrics. (g) shows the visual examples generated by different network variants.

across BSDS500, NYUV2, KITTI, and DRIVE datasets. To
maintain clarity amidst variations in image resolution across
these datasets, we customize the number of generated super-
pixels as follows: 600 for BSDS, 800 for NYUV2, 1000 for
KITTI, and 1600 for DRIVE. Comparing the visual exam-
ples of seven SOTA models, our method exhibits superior
performance in preserving accurate boundaries and achieving
a higher degree of superpixel compactness. In the visual
example of DRIVE shown in Fig.6, when compared to FCN,
LNSNet, AINet, FSNet, and CDS, our method (displayed in
the last column) not only effectively preserves the vessel’s
edge but also maintains an impressive level of compactness.
In contrast, although SLIC and SSN exhibit superior com-
pactness, they compromise on the accuracy of perceiving the
vessel’s edge, leading to insufficient vessel perception. For
the visual example of NYUV2 shown in Fig.6, our method
can better retain the legs of the chair and achieve better
compactness. Similarly, the visual examples of BSDS500 and
KITTI can also draw the same conclusion. These observations
collectively underscore the superiority of our ELGANet.

C. Model Analysis
1) Ablation Study: To validate the effectiveness of our

new EeEM and LGAM, we conducted comprehensive ablation
studies on the BSDS500 and NYUV2 datasets. Specifically,
we first trained 4 network variants with different config-
urations using BSDS500 training set, and evaluated them
on both BSDS500 test set and NYUV2. The network vari-
ants include: ‘baseline’ is the basic network without any
additional modules; ‘baseline+EeEM’ is the basic network
equipped with EeEM; ‘baseline+LGAM’ is the basic network
equipped with LGAM; ‘Ours’ is our full model, which is
equivalent to ‘baseline+EeEM+LGAM’. The solid lines in
Fig. 7(a)-(f) depict the quantitative results. ‘baseline+EeEM’

has achieved a higher BPBR, ASA and CO performance
compared to ‘baseline’, which validates the effectiveness of
our EeEM. Similarly, ‘baseline+LGAM’ also shows perfor-
mance enhancement, particularly in significantly improving
the CO score, compared to ‘baseline’. These observations
affirm the effectiveness of LGAM in enhancing superpixel
compactness. Finally, the ‘Ours’ achieves the best performance
on both metrics, showcasing the effectiveness of both EeEM
and LGAM. The visual examples in Fig. 7(g) further illustrate
the consistent performance improvement.

Additionally, we also trained another 4 network variants
to validate the effectiveness of the key components within
EeEM or LGAM. ‘Ours wo MaxAvg’ refers to the vari-
ant where we remove the ‘MaxAvg’ component from our
EeEM; ‘Ours wo SobelHV’ refers to the variant where we re-
move the ‘SobelH-DWConv’ and ‘SobelV-DWConv’ branches
from our EeEM; ‘Ours wo LA’ refers to the variant where
we remove the local attention module from our LGAM;
‘Ours wo GA’ refers to the variant where we remove the
global attention module from our LGAM. The dashed lines in
Fig.7(a)-(f) depict the quantitative results. It can be observed
that removing any component from our network results in a
performance decrease, underscoring the pivotal role of our
novel components. The visual examples in Fig.7(g) further
support these consistent conclusions.

2) Comparison between LGAM and ASPP: To validate the
effectiveness of our proposed LGAM in modeling contextual
information, we replace the LGAM with the classical ASPP
(Atrous spatial pyramid pooling) module, which comprises
multiple parallel convolutions with varying dilation rates. As
shown in Fig.8, the black line represents the model variant
equipped with ASPP, while the red bold line denotes the model
equipped with LGAM. As can be seen from Fig.8 (b),(d),
our method achieves similar performance to ASPP in terms
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(a) BSDS-BPBR (b) BSDS-CO

(c) NYUV2-BPBR (d) NYUV2-CO

Fig. 8: The comparison of different global feature extractors,
and the impact of different λ values on performance.

of compactness (CO metric). However, as shown in Fig.8
(a),(c), our LGAM significantly outperforms ASPP in terms
of BPBR metric. These observations support the superiority
of our proposed LGAM in modeling contextual information.

3) The impact of hyperparameter λ in loss function:
To examine the impact of the hyperparameter λ in the loss
function Eq.(20) on performance, we analyzed the effects
of varying balancing weights on performance. As shown in
Fig.8 (b),(d), as the λ increases, the compactness value also
increases. This can be attributed to the fact that a larger λ
value favors the formation of superpixels among pixels that are
closer in spatial position. As depicted in Fig.8 (a),(c), it can be
observed that excessively large or small values of λ can both
lead to a decline in performance. The optimal performance is
achieved when λ is set to 0.003/16. Therefore, considering
the balance between compactness and accuracy, we set a λ
value to 0.003/16 in all experiments.

4) The impact of different image sizes on performance: We
further investigated the impact of image size on ELGANet’s
performance. Three model variants are trained using three
different image sizes (e.g., 96×96, 208×208, and 320×320),
and the quantitative results are shown in Fig. 9. We observe
that as the image size increases, the overall performance
improves. When the image size increases from the smaller
96×96 to 208×208, there is a significant performance boost.
However, when the image size increases from 208 × 208 to
the larger 320× 320, the performance improvement becomes
more modest. This may be due to the fact that as the image size
increases, it begins to provide richer spatial detail, but beyond
a certain size, the additional details become limited, leading
to slower performance gains. In addition, processing high-
resolution images incurs significantly higher computational
costs. To balance segmentation performance and computa-
tional efficiency, we set the default image size to 208 × 208
in our experiments.

(a) BSDS-BPBR (b) BSDS-ASA

(c) NYUV2-BPBR (d) NYUV2-ASA

Fig. 9: The impact of different image sizes on performance.

Fig. 10: Complexity comparison between different methods

D. Model Complexity

We also make a comparison of inference speed and model
size between our method and six deep networks. For a fairness,
we tested on BSDS500 using the same workstation equipped
with a NVIDIA RTX3090 GPU. As shown in Fig.10, our
inference speed is slightly lower than that of FCN and CDS
methods, yet it is significantly superior to the other four
methods. In addition, our model comprises 3.501M parame-
ters, slightly higher than those of SSN, FCN, LNSNet, and
CDS, but all these models remain within a relatively low
parameter range. Despite owning a complexity comparable
to or slightly higher than that of other models, our model
generally outperforms them across all four datasets in terms
of super-pixel segmentation performance, also demonstrating
the superiority of our method.
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Fig. 11: Visual examples of the application in USSS.

TABLE I: Performance comparison between Unsupervised Se-
mantic Segmentation and our ELGANet-assisted Unsupervised
Semantic Segmentation. The higher the metric value, the bet-
ter. The upward arrow indicates the performance improvement.

Metrics Original Method Ori+ELGANet Improvement

Average AMI 0.240 0.316 0.076 (↑)
Average FMI 0.472 0.530 0.058 (↑)

E. Application

Superpixel can be applied in image semantic segmentation
task. In unsupervised semantic segmentation (USSS) of remote
sensing images [47], superpixels play a crucial role as pseudo-
labels for unsupervised learning. To examine the advantages of
our superpixel segmentation method in the semantic segmen-
tation of remote sensing images, we replace the superpixels
in the original method with our proposed ELGANet. The
experimental results are shown in the Table.I. We evaluated
the performance using two key metrics: Average AMI and
Average FMI (Please refer to [47] for specific details). By in-
tegrating our ELGANet into the original method, we observed
a significant improvement in these performance indicators.
The visual examples of semantic segmentation are shown
in Fig.11, clearly demonstrating that Ori+ELGANet achieves
superior pixel-level semantic segmentation results compared to
the original method. All these observations strongly validate
the effectiveness and importance of utilizing superpixels to
enhance image segmentation tasks.

F. Failure cases

Our method achieved general superior performance on four
different datasets. However, our ELGANet still performs un-
satisfactorily in complex scenarios with low contrast. Fig.12
exhibits several failure examples, where the foreground and

Fig. 12: Some visual examples of the failure cases.

background share similar color and texture characteristics. In
these cases, our method clusters pixels belonging to different
categories into the same superpixel, failing to preserve the
edge information of the object well. This may be attributed
to the blurred boundary characteristics, which prevent the
clear distinction of different pixels. In the future, we plan to
further investigate solutions for low-contrast failure scenarios,
potentially incorporating advanced attention mechanisms or
adaptive loss functions, which hold great potential for enhanc-
ing performance.

V. CONCLUSION

To enhance the performance of superpixels segmentation,
we propose a novel Edge guided Local-Global Attention
Network (ELGANet), which incorporating with our novel
Edge Enhancement Module (EeEM) and Local-Global At-
tention Module (LGAM). In EeEM, multiple types of edge
information are leveraged to enhance the network’s ability of
preserving precise object edge, thereby improving the accuracy
of superpixel segmentation. In LGAM, we explore local and
global context interactions between pixels and patches to iden-
tify similar pixels and enhance the superpixels compactness.
Comprehensive ablation studies validate the effectiveness of
our specially designed modules in improving performance. Ex-
periments conducted on four popular datasets further demon-
strate the superiority of our proposed method compared to ten
state-of-the-art models. Although our ELGANet demonstrates
promising performance, it remains suboptimal in low-contrast
scenarios, and the computational complexity still requires
further optimization. Therefore, in future works, we plan to
conduct an in-depth investigation into these issues, aiming for
further performance improvements.
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